qopscribe/summarize_service/app/worker.py

52 lines
1.9 KiB
Python

# app/worker.py
import time
import logging
from model_loader import ModelLoader
from inference_service import InferenceService
from redis_client import RedisClient
from config import BASE_MODEL, ADAPTER_DIR, HF_TOKEN, REDIS_HOST, REDIS_PORT, TEXT_RESULT_CHANNEL, TEXT_TASK_CHANNEL, BATCH_SIZE, WAIT_TIMEOUT
def main():
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logging.info("Инициализация модели...")
model_loader = ModelLoader(BASE_MODEL, ADAPTER_DIR, HF_TOKEN)
model_loader.load_model()
model_loader.load_tokenizer()
inference_service = InferenceService(model_loader)
logging.info(f"Подключение к Redis: {REDIS_HOST}:{REDIS_PORT}")
redis_client = RedisClient(
host=REDIS_HOST,
port=REDIS_PORT,
task_channel=TEXT_TASK_CHANNEL,
result_channel=TEXT_RESULT_CHANNEL
)
logging.info(f"Worker запущен, ожидаем задачи в канале {TEXT_TASK_CHANNEL}...")
while True:
tasks = redis_client.get_tasks(BATCH_SIZE, wait_timeout=WAIT_TIMEOUT)
if not tasks:
time.sleep(0.5)
continue
logging.info(f"Получено {len(tasks)} задач для обработки")
texts = [task.text for task in tasks]
responses = inference_service.generate_batch(texts)
for task, response in zip(tasks, responses):
result = {
"chat_id": task.chat_id,
"user_id": task.user_id,
"message_id": task.message_id,
"text": response
}
redis_client.publish_result(result)
logging.info(f"Обработана задача {task.message_id}, результат отправлен в канал {TEXT_RESULT_CHANNEL}")
if __name__ == "__main__":
main()