mts-mouse/n2_new.py

377 lines
12 KiB
Python
Raw Normal View History

2024-10-16 09:21:31 +02:00
import requests
import time
import heapq
class Cell:
def __init__(self, x, y):
self.x = x
self.y = y
self.walls = {'N': None, 'E': None, 'S': None, 'W': None}
self.visited = False
def get_wall_code(self):
up = self.walls['N']
right = self.walls['E']
down = self.walls['S']
left = self.walls['W']
walls = (
1 if up else 0,
1 if right else 0,
1 if down else 0,
1 if left else 0
)
walls_to_code = {
(0, 0, 0, 0): 0,
(0, 0, 0, 1): 1,
(1, 0, 0, 0): 2,
(0, 1, 0, 0): 3,
(0, 0, 1, 0): 4,
(0, 0, 1, 1): 5,
(0, 1, 1, 0): 6,
(1, 1, 0, 0): 7,
(1, 0, 0, 1): 8,
(0, 1, 0, 1): 9,
(1, 0, 1, 0): 10,
(1, 1, 1, 0): 11,
(1, 1, 0, 1): 12,
(1, 0, 1, 1): 13,
(0, 1, 1, 1): 14,
(1, 1, 1, 1): 15
}
return walls_to_code.get(walls, 0)
class Maze:
class ExitDFS(Exception):
pass
def __init__(self):
self.size = 16
self.restart()
self.grid = [[Cell(x, y) for y in range(self.size)] for x in range(self.size)]
self.cells_to_ignore = {(7, 8)}
def restart(self):
#self.grid = [[Cell(x, y) for y in range(self.size)] for x in range(self.size)]
self.start_x = 0
self.start_y = 0
def get_cell(self, x, y):
return self.grid[x][y]
def is_within_bounds(self, x, y):
return 0 <= x < self.size and 0 <= y < self.size
def to_array(self):
maze_array = []
for y in range(self.size - 1, -1, -1):
row = []
for x in range(self.size):
cell = self.get_cell(x, y)
row.append(cell.get_wall_code())
maze_array.append(row)
return maze_array
class Robot:
def __init__(self, token: str, maze: Maze):
self.token = token
self.api_url = 'http://127.0.0.1:8801/api/v1'
self.maze = maze
self.restart()
def restart(self):
self.x = self.maze.start_x
self.y = self.maze.start_y
self.orientation = 'N' # 'N', 'E', 'S', 'W'
self.visited_cells = set()
self.move_count = 0
def get_sensor_data(self):
time.sleep(0.2)
response = requests.get(f'{self.api_url}/robot-cells/sensor-data', params={'token': self.token})
return response.json()
def move_forward(self):
requests.post(f'{self.api_url}/robot-cells/forward', params={'token': self.token})
time.sleep(0.2)
self.update_position('forward')
def turn_left(self):
requests.post(f'{self.api_url}/robot-cells/left', params={'token': self.token})
time.sleep(0.2)
self.update_orientation('left')
def turn_right(self):
requests.post(f'{self.api_url}/robot-cells/right', params={'token': self.token})
time.sleep(0.2)
self.update_orientation('right')
def update_orientation(self, turn):
directions = ['N', 'E', 'S', 'W']
idx = directions.index(self.orientation)
if turn == 'left':
self.orientation = directions[(idx - 1) % 4]
elif turn == 'right':
self.orientation = directions[(idx + 1) % 4]
def update_position(self, move):
dx, dy = 0, 0
if self.orientation == 'N':
dy = 1 if move == 'forward' else -1
elif self.orientation == 'E':
dx = 1 if move == 'forward' else -1
elif self.orientation == 'S':
dy = -1 if move == 'forward' else 1
elif self.orientation == 'W':
dx = -1 if move == 'forward' else 1
self.x += dx
self.y += dy
self.move_count += 1
def explore(self):
try:
self._dfs(self.x, self.y)
except self.maze.ExitDFS:
pass
def _dfs(self, x, y):
if (x, y) in self.maze.cells_to_ignore:
return
cell = self.maze.get_cell(x, y)
if cell.visited:
return
cell.visited = True
self.visited_cells.add((x, y))
sensor_data = self.get_sensor_data()
threshold = 100
walls = {}
walls[self.orientation_to_dir('N')] = sensor_data['front_distance'] < threshold
walls[self.orientation_to_dir('E')] = sensor_data['right_side_distance'] < threshold
walls[self.orientation_to_dir('W')] = sensor_data['left_side_distance'] < threshold
walls[self.orientation_to_dir('S')] = sensor_data['back_distance'] < threshold
cell.walls.update(walls)
possible_directions = []
for direction in ['N', 'E', 'S', 'W']:
if not cell.walls[direction]:
nx, ny = self.get_next_position(x, y, direction)
if self.maze.is_within_bounds(nx, ny) and (nx, ny) not in self.visited_cells:
if (nx, ny) not in self.maze.cells_to_ignore:
possible_directions.append(direction)
for direction in possible_directions:
nx, ny = self.get_next_position(x, y, direction)
self.move_to(direction)
self._dfs(nx, ny)
self.move_to(self.opposite_direction(direction))
def get_next_position(self, x, y, direction):
dx, dy = 0, 0
if direction == 'N':
dy = 1
elif direction == 'E':
dx = 1
elif direction == 'S':
dy = -1
elif direction == 'W':
dx = -1
return x + dx, y + dy
def move_to(self, direction):
turns = self.calculate_turns(self.orientation, direction)
for turn in turns:
if turn == 'left':
self.turn_left()
elif turn == 'right':
self.turn_right()
self.move_forward()
def calculate_turns(self, current_orientation, target_orientation):
directions = ['N', 'E', 'S', 'W']
idx_current = directions.index(current_orientation)
idx_target = directions.index(target_orientation)
delta = (idx_target - idx_current) % 4
if delta == 0:
return []
elif delta == 1:
return ['right']
elif delta == 2:
return ['right', 'right']
elif delta == 3:
return ['left']
def opposite_direction(self, direction):
opposites = {'N': 'S', 'E': 'W', 'S': 'N', 'W': 'E'}
return opposites[direction]
def orientation_to_dir(self, relative_direction):
directions = ['N', 'E', 'S', 'W']
idx = directions.index(self.orientation)
if relative_direction == 'N':
return directions[idx]
elif relative_direction == 'E':
return directions[(idx + 1) % 4]
elif relative_direction == 'S':
return directions[(idx + 2) % 4]
elif relative_direction == 'W':
return directions[(idx - 1) % 4]
def restart_maze(self):
response = requests.post(f"{self.api_url}/maze/restart", params={'token': self.token})
time.sleep(0.5)
if response.status_code == 200:
print("Лабиринт перезапущен.")
else:
print(f"Ошибка при перезапуске лабиринта: {response.text}")
def find_shortest_path_to_target(self, target_x, target_y):
start_state = (self.x, self.y, self.orientation)
queue = []
heapq.heappush(queue, (0, 0, start_state, []))
visited = set()
while queue:
f, g, (x, y, orientation), path = heapq.heappop(queue)
if (x, y, orientation) in visited:
continue
visited.add((x, y, orientation))
if (x, y) == (target_x, target_y):
print(f"Найден путь до цели ({target_x}, {target_y})")
return path
cell = self.maze.get_cell(x, y)
for action in ['forward', 'left_forward', 'right_forward']:
if action == 'forward':
next_orientation = orientation
dx, dy = self.get_direction_delta(orientation)
nx, ny = x + dx, y + dy
action_cost = 1
elif action == 'left_forward':
next_orientation = self.turn_orientation(orientation, 'left')
dx, dy = self.get_direction_delta(next_orientation)
nx, ny = x + dx, y + dy
action_cost = 2
elif action == 'right_forward':
next_orientation = self.turn_orientation(orientation, 'right')
dx, dy = self.get_direction_delta(next_orientation)
nx, ny = x + dx, y + dy
action_cost = 2
if not self.maze.is_within_bounds(nx, ny):
continue
next_cell = self.maze.get_cell(nx, ny)
wall = cell.walls.get(next_orientation)
if wall is None or wall:
continue
h = self.distance_to_target(nx, ny, target_x, target_y)
heapq.heappush(queue, (
g + action_cost + h,
g + action_cost,
(nx, ny, next_orientation),
path + [(action, next_orientation)]
))
print(f"Путь до цели ({target_x}, {target_y}) не найден.")
return None
def execute_path(self, path):
for action, orientation in path:
if action == 'forward':
self.move_forward()
elif action == 'left_forward':
self.turn_left()
self.move_forward()
elif action == 'right_forward':
self.turn_right()
self.move_forward()
self.orientation = orientation
print(f"Робот прибыл к цели на позиции ({self.x}, {self.y})")
def get_direction_delta(self, orientation):
if orientation == 'N':
return 0, 1
elif orientation == 'E':
return 1, 0
elif orientation == 'S':
return 0, -1
elif orientation == 'W':
return -1, 0
def turn_orientation(self, current_orientation, turn):
directions = ['N', 'E', 'S', 'W']
idx = directions.index(current_orientation)
if turn == 'left':
return directions[(idx - 1) % 4]
elif turn == 'right':
return directions[(idx + 1) % 4]
def distance_to_target(self, x, y, target_x, target_y):
return abs(x - target_x) + abs(y - target_y)
def restart(robot: Robot, maze: Maze):
robot.restart()
robot.restart_maze()
maze.restart()
def start_once(robot: Robot, matrix_check: bool=True, score_check: bool=True):
robot.explore()
print_results(robot=robot, matrix_check=matrix_check, score_check=score_check)
restart(robot, robot.maze)
path = robot.find_shortest_path_to_target(7, 8)
if path:
robot.execute_path(path)
else:
print("Не удалось найти путь до клетки (7, 8).")
def print_results(robot: Robot, matrix_check: bool=False, score_check: bool=True):
maze_array = robot.maze.to_array()
if matrix_check:
for row in maze_array:
print(row)
if not score_check:
return
response = requests.post(
f'{robot.api_url}/matrix/send',
params={'token': robot.token},
json=maze_array
)
if response.status_code == 200:
response_data = response.json()
score = response_data.get('Score')
if score is not None:
print('Отправка матрицы завершена' + f', Score: {score}')
else:
print('Отправка матрицы завершена, но Score отсутствует в ответе:', response_data)
else:
print('Ошибка при отправке матрицы, статус код:', response.status_code)
def main(num_att=1):
token = 'token'
maze = Maze()
robot = Robot(token=token, maze=maze)
times = time.time()
for i in range(num_att):
start_time = time.time()
print(f'Попытка {i + 1}')
start_once(robot=robot)
print(f'Время {time.time() - start_time} секунд')
print(f'Общее время {time.time() - times} секунд (лимит - {60 * 15})')
if __name__ == '__main__':
main(num_att=1)